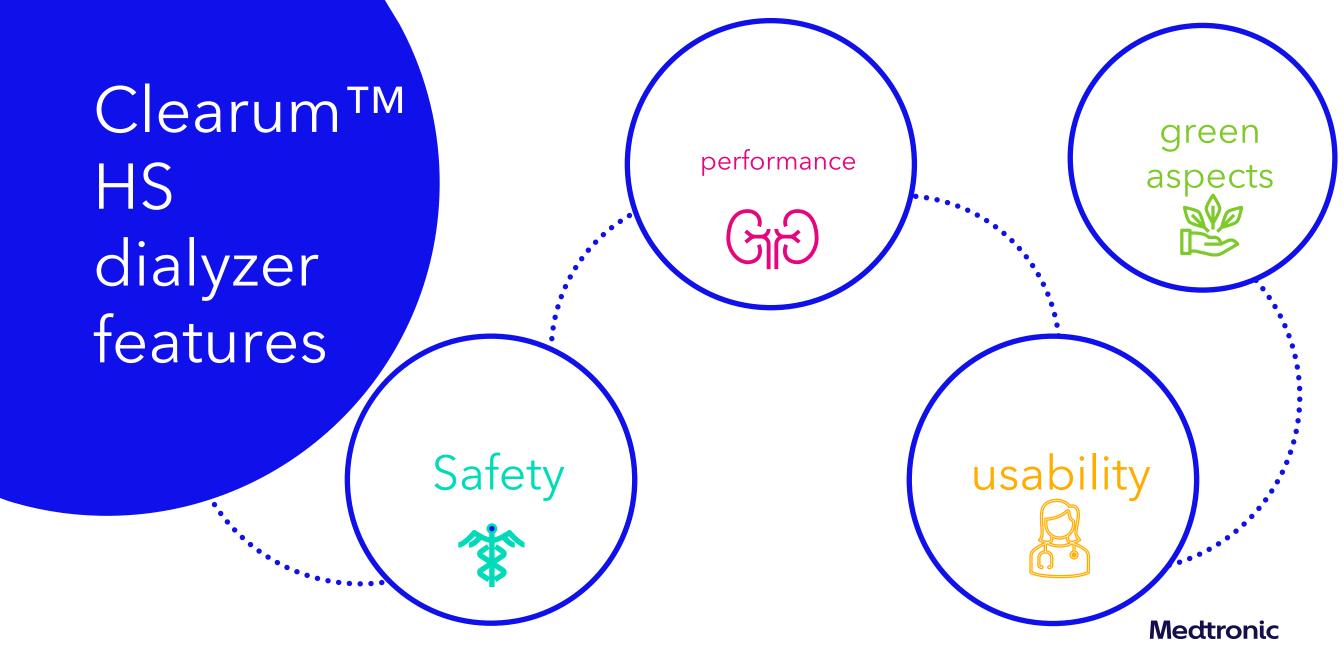


ClearumTM HS Dialyzers

Clearum Overview

Clearum[™] high flux steam sterilized (HS) dialyzers are standard hemodialysis dialyzers with a biocompatible, high-flux membrane that provides adequate balance between diffusion and convection in both HD, HF and HDF.


Clearum[™] HS Dialyzers promote toxin removal and retention of critical proteins to provide safe, effective therapy^{1,2,3}

2. 2.TR_CLE_008_R01_Clearum Clearance Report

3. 3.MaduellF, Broseta JJ, Guillen MA, et al. Efficacy and Safety of the Clearum Dialyzer. Artif Organs. 2021;45(10):1195-1201.

Safety

BPA free materials and processes

Steam sterilization ensures a **lower impact on various indices** from WBC, platelet count, level of C3a, C5a and PMN elastase¹.

HEMOCOMPATIBILITY

ENDOTOXIN BARRIER

The Clearum[™] HS dialyzer hollow fiber performs as a barrier to pyrogen transfer decreasing the occurrence of **non infective inflammation**².

1. Müller TF, Seitz M, Eckle I, Lange H, Kolb G. Biocompatibility differences with respect to the dialyzer sterilization method. Nephron. 1998;78(2):139-42

2. TR_END_001_R00 (claim CE marked)

Performance

	Magnification 10 000 x	Clearum™HS 17 dialyzer (Medtronic)	Optiflux F180A (Fresenius)	Outcome	
I	Internal Surface			Stable Sieving Coefficient of substances to retain and reduced rugosity and cell adhesion	selective
	Outer surface			Higher tolerance towards steam sterilization and Stable clearance	consisten
	Cross Section			Improved clearance and marked separation between substances to retain and those to be eliminated	

SEM imaging of rcs Clearum dialyzer fibers and comparison with original design and competitor dialyzer fibers Author: Reza Jahanbekam, Date: June 16th, 2021, reviewer: Anna Belu, file name: 061621db

Medtronic

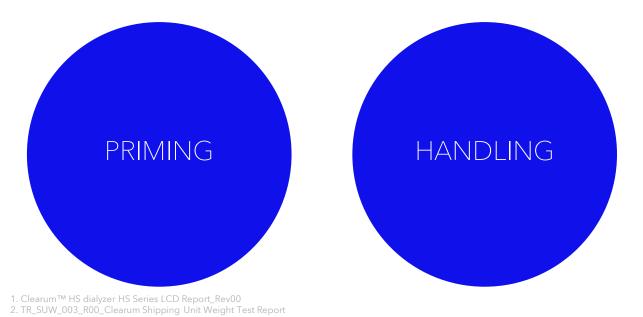
Performance

The **undulation** of the capillaries and a balanced **packing density** allows Clearum[™] HS dialyzer to foster diffusion mechanisms

selective

Medtronic

1. Clearum™ HS dialyzer HS Series LCD Report_Rev00


Users showed a strong acceptance level of Clearum™ HS dialyzer in priming procedures, not only with Medtronic machines but also with the competitors ones: CONSISTENT

Fresenius 5008 Nikkiso DDB EXA Baxter Artis Nipro Surdial X Braun Dialog¹

Conclusions from Limited Control Distribution Report (Western Europe):

Clearum[™] HS dialyzer demonstrated strong or good acceptance with **priming, blood rest, packaging, and handling** with Medtronic and other machines on the market¹.

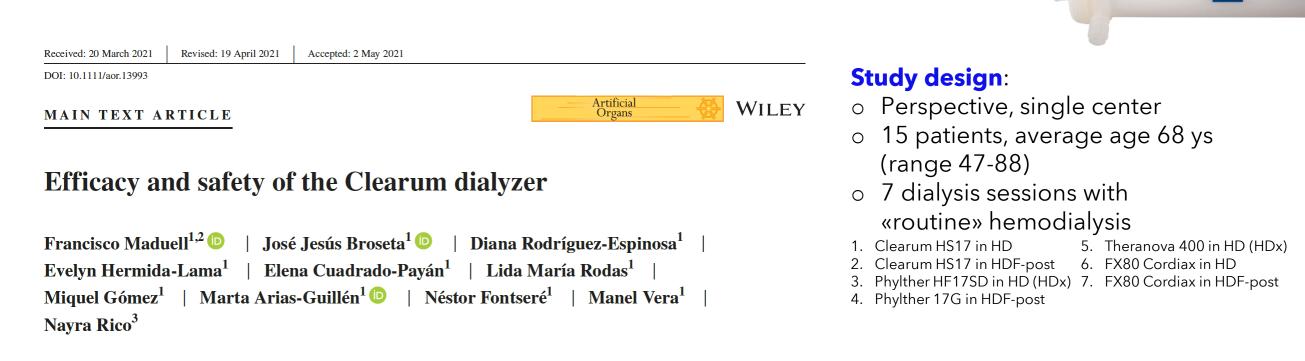

Polypropylene material used in Clearum™ HS dialyzer housing

is about 30% lighter than PC (polycarbonate), making it easier to manage for the operators².

Medtronic

Green Aspects

- **Polypropylene** material reduces the carbon footprint by 60%¹
- 95% of the water and solvent can be recovered and recycled²
- Steam Sterilization process avoids releasing ozone material³



1. Keoleian G, Miller S, De Kleine R, Fang A, Mosley J. Life Cycle Material Data Update for GREET Model. University of Michigan: Ann Arbor. 2012:1-74 2. The recovery system_percentage values of recovery_signed.

3. GIPA-IIA, 2017, A comparison of gamma, e-beam, x-ray and ethylene oxide technologies for the industrial sterilization of medical devices and healthcare products

Clinical Experience

Aim of the study: efficacy and risk of hypoalbuminemia of Clearum compared with previously evaluated hemodialysis (HD), expanded hemodialysis (HDx) and postdilution hemodiafiltration (HDF) treatments.

Maduell F, Broseta JJ, Rodríguez-Espinosa D, et al. Efficacy and safety of the clearum dialyzer. Artif Organs. 2021 May 12. doi: 10.1111/aor.13993. Epub ahead of print.

Medtronic

Clinical Experience

Reduction Rati	tio RR('	%)	Clearum™ HS 17	Clearum™ HS 17	Phylther 17- SD	Phylther 17- G	Theranova 400	FX80 Cordiax	FX80 Cordiax	
		Toxin	HD	HDF	HDx.	HDF	HDx.	HD	HDF	Albumin dialysate loss (mg)
Small Toxins	1.	Urea (60 Da)	81.3 ± 4.2	84.0 ± 3.8	80.0 ± 5.1	84.2 ± 4.4	83.6 ± 5.1	81.9 ± 3.5	83.6 ± 4.8	
Small Toxins	1.1	Creatinine (113 Da)	74.8 ± 4.7	78.3 ± 5.1	73.4 ± 5.4	78.5 ± 5.6	77.6 ± 5.4	77.0 ± 7.8	78.0 ± 5.9	6000
	•	β ₂ -microglobulin (11, 818 Da)	72.8 ± 7.7	85.2 ± 4.1	75.6 ± 4.1	83.0 ± 4.8	81.7 ± 4.9	77.2 ± 3.5	85.1 ± 3.9	
Medium Toxins	•	Myoglobin (17, 200 Da)	54.2 ± 7.9	75.8 ± 7.7	68.6± 6.8	73.4 ± 6.6	70.4 ± 7.0	43.7 ± 5.5	77.6 ± 6.9	4000
	•	Prolactin (23, 000 Da)	50.4 ± 9.4	73.8 ± 9.0	65.7 ± 9.3	67.7± 6.6	70.4 ± 6.5	44.7 ± 8.8	75.3 ± 8.5	•3023 •2570
	•	∝ ₁ -micoglobulin (33, 000 Da)	12.2 ± 9.5	23.7 ± 10.5	24.0 ± 12.2	21.9 ± 15.1	22.1 ± 7.6	6.6 ± 11.4	26.4 ± 12.3	200001363
Large Toxins	•	∝ ₁ -acid glycoprotein (41, 000 Da)	6.8 ± 6.8	10.5 ± 6.7	11.0 ± 8.8	10.6 ± 9.8	15.6 ± 7.9	4.7 ± 8.6	18.2 ± 11.4	
		Albumin (66,000 Da)	7.6 ± 5.3	8.3 ± 6.2	7.2 ± 6.6	10.7 ± 7.5	10.0 ± 7.1	7.1 ± 6.8	8.5 ± 7.6	Clearum [™] Clearum [™] Phylther SD Phylther G Theranova FX80 FX80 HD HDF HDx HD HDF

- No differences between small molecules
- Clearum dialyzer in HDF obtained similar results to the Helixone in HDF, slightly superior to the polyphenylene dialyzer also in HDF, and statistically superior results to both dialyzers in HDx
- Albumin losses with the Clearum dialyzer were among the lowest

Maduell F, Broseta JJ, Rodríguez-Espinosa D, et al. Efficacy and safety of the clearum dialyzer. Artif Organs. 2021 May 12. doi: 10.1111/aor.13993. Epub ahead of print.

Important: Please refer to the package insert for complete instructions, contraindications, warnings and precautions. © 2022 Medtronic. Medtronic, Medtronic logo, and Engineering the extraordinary are trademarks of Medtronic. TM* Third-party brands are trademarks of their respective owners. All other brands are trademarks of a Medtronic. EMEA-RC-2200026-era-22-clearum-in-booth-presentation-en-we-6930624

